Sum α β, or α ⊕ β, is the disjoint union of types α and β.
An element of α ⊕ β is either of the form .inl a where a : α,
or .inr b where b : β.
Constructors
inl.{u, v} {α : Type u} {β : Type v} (val : α) : α ⊕ β
Left injection into the sum type α ⊕ β. If a : α then .inl a : α ⊕ β.
inr.{u, v} {α : Type u} {β : Type v} (val : β) : α ⊕ β
Right injection into the sum type α ⊕ β. If b : β then .inr b : α ⊕ β.